Mark Scheme (Results) January 2010

GCE

GCE Chemistry (6CH07/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on +441204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/
(If you are calling from outside the UK please dial + 441204770696 and state that you would like to speak to the Science subject specialist).

January 2010
Publications Code US022683
All the material in this publication is copyright
© Edexcel Ltd 2010

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(i)	Nichrome (1) ALLOW Platinum/Pt/ceramic rod ACCEPT recognisable spelling	2	
	Second mark depends on first. Unreactive/inert/chemically stable (at high temperatures in air/with acid)/does not colour flame/high melting point (1)	High resistance Does not decompose Not easily burned/does not catch fire/does not react with flame Can withstand high T/thermodynamically stable	

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	Sodium/sodium ion $/ \mathrm{Na}^{+}$	$\mathrm{Na} /$ sodium atom $/ \mathrm{Na}^{-}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	Silver bromide ALLOW $\mathrm{AgBr} / \mathrm{Ag}^{+} \mathrm{Br}-((\mathrm{s}))$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i) ~}$	$\mathrm{Br}-\mathrm{Br}^{-1 / 1-}$ ALLOW I- or Cl- if iodide or chloride given in (b)(i)${\mathrm{Br} / \mathrm{Br}_{2}}_{\mathrm{AgBr}}$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iii)	The precipitate darkens ALLOW Precipitate turns purple/grey/black/ blue/silver	Green, orange, red, brown, yellow	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(i)	Hydrogen bromide/HBr/BrH ALLOW hydrobromic acid	$\mathrm{HCl/HI}$ Hydrogen chloride/hydrogen iodide	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	Test: Ammonia (solution on glass rod) (1) Result: gives white smoke (1) ALLOW white fumes/solid Result mark dependant on ammonia.	Steamy fumes	2
	ALLOW Other indicators with correct colour change from and to. Eg litmus from blue to red for 1max	ALLOW addition to silver nitrate solution to form cream precipitate for 1max Reward unexpected correct chemistry! Eg Mix gas with chlorine gas to form a brown liquid/gas for both marks	

Question Number	Acceptable Answers	Reject	Mark
1 (c)(iii)	Bromine $/ \mathrm{Br}_{2}$ ALLOW bromine liquid/gas/water/solution	$\mathrm{Br} / \mathrm{Br}$ $\mathrm{Bromide} / \mathrm{bromine}$ water Chlorine $/ \mathrm{Cl}_{2}$ lodine $/ \mathrm{l}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i v)}$	Gas:` Sulfur dioxide (1) ALLOW SO Type: Reduction (of sulfuric acid) Redox ALLOW oxidation of (hydrogen) bromide (1) Second mark depends on first unless hydrogen sulfide given.	Displacement	$\mathbf{2}$
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
2 (a)	Liquid B Allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$ Name of X Propan-1-ol/1-propanol Check for ' o ' rather than ' a ' in propan-1ol ALLOW correct formula and consistent name for butan-1-ol and pentan-1-ol for 1 max	Propanal/prop-1-ol Propanol	2
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
2 (b)	C propanone ALLOW $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} /$ fully displayed formula/propan-2-one/propan-2-one (1)	If both formula and name given both must be correct	2
	Y propan-2-ol/2-propanol (1) Ignore punctuation ALLOW consistent answers based on butan-2-ol and pentan-2-ol for 1 max	Prop-2-ol	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3}$ (a)	Add an excess of calcium hydroxide/calcium oxide to water /until no more will dissolve(1) OWTTE leave for 24 hours/heat and leave to cool/ decant/filter/keep temperature constant (1) Accept unexpected correct Chemistry!	Add excess Ca to water	$\mathbf{2}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3 ~ (b) (i) ~}$	$\left(10 \mathrm{~cm}^{3}\right)$ pipette ALLOW recognisable spelling (eg pipet /pippette)	Burette/measuring cylinder/cylinder	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
3 (b)(ii)	Indicator Methyl orange (1) From yellow to orange (1) ALLOW to red/pink	Litmus / universal indicator/ pH paper	$\mathbf{2}$
	ALLOW any named acid-base indicator (recognisable spelling) with correct colour change eg Phenolphthalein (1) From pink/purple/red to colourless (1)		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3 ~ (c) (i) ~}$	$8.95(1)$		$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3}$ (c)(ii)	First titration is likely to be inaccurate/rough/only a range finder/ not concordant / not within $\pm 0.2 / 0.1 \mathrm{~cm}^{3}$	Too high unless explained as overshoot Difference to high	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3}$ (c)(iii)	8.90 (1)	Use of 9.20 (ans $9.00)$	$\mathbf{1}$
	ALLOW 8.9		
	ACCEPT TE from (i)		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
3 (c)(iv)	$\frac{8.90 \times 0.05}{1000}$ $=4.45 \times 10^{-4} / 4.45 .10^{-4} / 0.000445(\mathrm{~mol})$		$\mathbf{1}$
	ALLOW Answer to (iii) $\times 0.00005$ ALLOW $4.5 \times 10^{-4} / 4.5 .10^{-4} / 0.00045$		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3 (c) (v)}$	$2.225 \times 10^{-4} / 0.0002225(\mathrm{~mol})$ ALLOW Answer to (iv) divided by 2 ALLOW $2.23 \times 10^{-4} / 0.000223$ $2.2 \times 10^{-4} / 0.00022$	$2.3 \times 10^{-4} / 0.00023$	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
3 (c)(vi)	$2.225 \times 10^{-4} \times 100=2.225 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-}\right.$ 3 ALLOW answer to (v) $\times 100$	$\mathbf{1}$	
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
3 (c)(vii)	$\begin{aligned} & 2.225 \times 10^{-2} \times 74.1 \\ & =1.648725 \\ & =1.65\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \end{aligned}$ if Mr 74 the answer is 1.6465 $=1.65\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ ALLOW Answer to (vi) $\times 74.1$ or $\times 74$ Ignore s.f. Note that 2.23×10^{-4} gives 1.650 with 74 or 1.652 with 74.1 2.3 gives 1.702 and 1.704 respectively 2.2 gives 1.628 and 1.630 respectively		1
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
3 (d)(i)	$50 \times 4.18 \times 5.5$ $=1150 / 1149.5(\mathrm{~J})$ ALLOW $1.1 / 1.150 / 1.1495 \mathrm{~kJ}$	50.74 as mass	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3 ~ (d) (i i) ~}$	$\frac{1149.5 \times 10^{-3}}{0.01}$$=-114.95 /-115 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~kJ} / \mathrm{mol}$ ALLOW $-114950 /-115000 \mathrm{~J} \mathrm{~mol}^{-1}$ Value (1) Sign and unit (1) ALLOW TE from (d)(i) ALLOW division by incorrect number of moles eg $\frac{1149.5 \times 10^{-3}}{0.05}(0)$ (0) $22.99 /-23.0 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)$ internal TE for sign/unit but only for dividing by an incorrect number of moles.	$\mathbf{2}$	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
3 (d)(iii)	$\frac{0.2 \times 100}{5.5}$ $=3.6 / 3.64 \%(2) 3.63 \% ~(1 m a x)$ First mark total error $=0.2$ Second mark percentage ALLOW $\frac{0.1 \times 100}{5.5}=1.8 / 1.82 \% ~(1 m a x)$	$\mathbf{2}$	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3}$ (d)(iv)	as the same neutralisation reaction/ same ionic equation		$\mathbf{1}$
ALLOW as nitric acid is a strong acid /both acids the same strength /same volume of same concentration of acid /same numbers of moles of protons/H H^{+} and same volume.	Same numbers of moles of acid		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3 ~ (d) (v) ~}$	$11^{\circ} \mathrm{C} /$ doubles	increases	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{3 ~ (d) (v i) ~}$	Experiment (v)/ more concentrated hydrochloric acid A bigger temperature change (1) IF temperature rise is the same in (v) ALLOW TE eg (iv) as larger volume gives(lower percentage error in volume measurement) Also: A smaller temperature change in (v) means (iv) is more accurate		$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4(a)	0.2×74.1 0.789 $=18.8 / 18.78\left(\mathrm{~cm}^{3}\right)$ but check unit is not wrong ie dm^{3} ignore s.f. except one ALLOW 18.76/19 (from $M=74)$	18.79	1
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4 (b)	Funnel with tap (1) ALLOW any shaped tube with opening at the top(which may be stoppered) with tap at the bottom Upper layer labelled as 2-chloro-2- methylpropane (1) Mark independently	2	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4 (c)(i)	To remove/react with acid/neutralize (hydrochloric acid)		$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4 (c)(ii)	No more bubbles/gas/pressure build up/carbon dioxide	Use of indicators	1
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4 (d)	(Anhydrous) sodium sulfate/calcium chloride/magnesium sulfate	anhydrous copper sulfate /anhydrous cobalt chloride/concentrated sulfuric acid /calcium oxide	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4 (e)	Round-bottom/pear shaped flask with 'heat'/arrow underneath/heating mantle/hot water bath(ignore drying agent in the flask)(1) Still head with thermometer at exit (1) Condenser with water (flowing up) (1) collection of product (1) Be generous on drawing - ignore accidental closures by poor drawing	Closed apparatus -1 Significant gaps allowing escape of product (eg between condenser and flask/around thermometer at top of still head (ie no bung)) -1	$\mathbf{4}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
4(f)	$\frac{18.7 \times 0.842}{92.6}$ $\frac{0.17 \times 100}{0.2}$ $=85 \% / 85.0 \% / 85.018 \%(1)$ It is possible and acceptable to arrive at the answer by working out masses or volumes: Masses give $\quad \frac{15.754 \times 100}{18.52}$ Volumes give $\frac{18.7 \times 100}{21.995}$ ALLOW Internal TE for incorrect number of moles, providing there is a clear attempt to find the number of moles OR ALLOW second mark for Actual amount x 100 if clearly stated in words Expected amount Correct answer with no working (2)		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{4 (g) (i)}$	To dissolve the halogenoalkane/ to mix the reagents/as a solvent/reactants are immiscible	To allow reaction	$\mathbf{1}$
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{4}$ (g)(ii)	White precipitate	AgCl formed	$\mathbf{1}$

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/ask or on +441204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

